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Abstract

This paper is firstly concerned with reliable H∞ filter design for a class of T–S fuzzy systems with stochastic sensor faults under 
an event triggered scheme. 1) A T–S fuzzy model is used to approximate the nonlinear dynamics of the plant. A set of stochastic 
variables are used to describe the sensor failure. 2) An event-triggered scheme, which has some advantages over some existing 
ones, is introduced to the networked control systems. Under the event-triggered scheme, the sensor data are transmitted only when 
the sampled measurements of the plant violate the specified event condition. Then, an event-based filter design model for T–S fuzzy 
systems is constructed by taking the effect of event-triggered scheme and the sensor faults into consideration. Sufficient conditions 
for the existence of the desired filter are established in terms of linear matrix inequalities and the explicit expression is given for 
the designed filter parameters. A numerical example is provided to illustrate the design method.
© 2014 Published by Elsevier B.V.
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1. Introduction

The control problem for T–S fuzzy systems has received considerable attention in recent years. It has been proved 
that T–S fuzzy systems, which can be analyzed by many properties of conventional linear systems and described 
by a family of IF–THEN rules, can approximate any continuous functions [1–3]. Over the past few years, a great 
effort has been made on the stability analysis and synthesis for T–S fuzzy systems. More specifically, the filtering 
problems for T–S fuzzy systems have been widely investigated by many researchers via various methodologies [4–6]. 
In [4], a class of T–S fuzzy stochastic systems was investigated. In [5], the authors investigated the robust and reliable 
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H∞ filter design for a class of nonlinear NCSs with random sensor faults via T–S fuzzy model. The authors in [6]
investigated the H∞ filtering issue for nonlinear systems with time delay via T–S fuzzy systems.

The insertion of network in the control systems has many advantages such as low cost, reduced weight and power 
requirements, simple installation and maintenance, and high reliability. However, it can also bring about new interest-
ing and challenging issues as to the limited capacity of the network cable, for example, the transmission delay, packet 
dropout, etc. Recently, some work has been made to increase the energy efficiency and reduce the cost of sensor 
network. There has been many publications in the literature [7,8]. Most of the available results employ time-triggered 
communication scheme. However, this might lead to insufficient utilization of limited resource and communica-
tion bandwidth. Especially when the system is close to its equilibrium point, there is little new information to be 
transmitted, thus, redundant communications have inevitability occurred [9]. Therefore, it is necessary to build a com-
munication mechanism in a unified framework. Recently, event-triggered method has received considerable attention, 
which can reduce the burden of the network communication and the occupation of the sensor. Many outstanding re-
sults under event-triggered method have been available [9–13]. For example, in [10], the authors proposed a novel 
event-triggered scheme and constructed a delay system model for the analysis, then they derived the criteria for sta-
bility with an H∞ norm bound and criteria for co-designing both the feedback gain and the trigger parameters. The 
authors in [11] proposed another event-triggered communication scheme and investigated a reliable control design 
for networked control system under event-triggered scheme. Little attention has been paid to the filtering problem 
for T–S fuzzy systems under event-triggered scheme. However, in distributed industrial networked control systems, 
the sensors can be in a hostile environment and subject to failure and the capacity of the network cable is limited, 
which may lead to intolerable system performance. Therefore, it is necessary to introduce an event-triggering sam-
pling mechanism, which takes the probabilistic sensor and actuator faults into consideration. One of the main focuses 
of this paper is to propose a fault-tolerant event-triggered scheme to reduce the computation load or to reduce the 
exchange of information between the control agents (sensors, controller, actuator), the advantage of the proposed 
event-triggering sampling mechanism is that it only needs a supervision of the system state in discrete instants, there 
is no need to retrofit the existing system. The implementation of our event-triggering sampling scheme only monitors 
the system state in discrete instants. Up to now, to the best of the authors’ knowledge, event-triggered filtering for a 
class of T–S fuzzy systems with stochastic sensor faults has not been well addressed. This situation has motivated our 
current investigation.

In this paper, we introduce an event-triggered communication scheme to save the limited network resources while 
preserving the desired performance. The scheme can decide whether or not the sampled sensor measurements are to
be transmitted. Only when the current sampled sensor measurements violate a special condition, then they can be 
transmitted. The overall purpose of this paper is to investigate the reliable H∞ filter design for a class of T–S fuzzy 
systems under event-triggered scheme. The main contributions of this paper are as follows: 1) a new kind of T–S fuzzy 
systems under event-triggered scheme with probabilistic sensor faults is proposed, which has not been considered in 
the existing references; 2) sufficient conditions are derived for the existence of the desired H∞ filter in terms of linear 
matrix inequalities. Based on the derived conditions, the event generator and filtering can be co-designed.

The paper is organized as follows. Section 2 presents the formation of the event-based T–S fuzzy systems with 
stochastic sensor faults. In Section 3, a sufficient condition for the existence of the desired filter is established in terms 
of linear matrix inequalities (LMIs) and a filter design method is provided. A numerical example is employed in the 
final part to demonstrate the effectiveness and applicability of our method.

Notation: Rn and Rn×m denote the n-dimensional Euclidean space, and the set of n × m real matrices; the su-
perscript “T ” stands for matrix transposition; I is the identity matrix of appropriate dimension; ‖ · ‖ stands for the 
Euclidean vector norm or the induced matrix 2-norm as appropriate; the notation X > 0 (respectively, X ≥ 0), for 
X ∈Rn×n means that the matrix X is real symmetric positive definite (respectively, positive semi-definite). For a ma-
trix B and two symmetric matrices A and C, 

[
A ∗
B C

]
denotes a symmetric matrix, where ∗ denotes the entries implied 

by symmetry.

2. System description

As is shown in Fig. 1, consider the following T–S fuzzy system with r plant rules
Ri : IFθ1(t) is Wi

1 and · · · and θg(t) is Wi
g ,

THEN
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Fig. 1. The structure of an event-triggered filtering system.

⎧⎨
⎩

ẋ(t) = Aix(t) + Adix
(
t − τ(t)

)+ Aωiω(t)

y(t) = Cix(t)

z(t) = Lix(t)

(1)

where i = 1, 2, · · · , r, r is the number of IF–THEN rules, θ1(t), θ2(t), · · · , θg(t) are the premise variables, x(t) ∈Rn, 
y(t) ∈Rm and z(t) ∈ Rp are the state vector, output vector and the signal to be estimated, respectively. Ai, Adi, Aωi,

Ci, Li, i ∈ S = {1, 2, · · · , r}, are parameter matrices with appropriate dimensions, ω(t) ∈ L2[0, ∞) denotes the ex-
ogenous disturbance signal, τ(t) is a time-varying delay taking values on the interval [τm, τM ], where τm and τM are 
positive real numbers.

By using center-average defuzzifier, product interference and singleton fuzzifier, the global dynamics of (1) can be 
inferred as⎧⎨

⎩
ẋ(t) = A(t)x(t) + Ad(t)x

(
t − τ(t)

)+ Aω(t)ω(t)

y(t) = C(t)x(t)

z(t) = L(t)x(t)

(2)

where A(t) = ∑r
i=1 hiAi , Ad(t) = ∑r

i=1 hiAdi , Aω(t) = ∑r
i=1 hiAωi , C(t) = ∑r

i=1 hiCi , L(t) = ∑r
i=1 hiLi . hi is 

the abbreviation for hi(θ(t)), hi(θ(t)) = αi(θ(t))∑r
i=1 αi(θ(t))

, αi(θ(t)) = ∏g

j=1 Wi
j (θj (t)), Wi

j (θj (t)) is the grade member-

ship value of θj (t) in Wi
j and hi(θ(t)) satisfies hi(θ(t)) ≥ 0, 

∑r
i=1 hi(θ(t)) = 1.

The purpose of this paper is to design an H∞ fuzzy filter, where ith rule is expressed in the following IF–THEN 
rule

Ri : IF θ1(t) is Wi
1 and · · · and θg(t) is Wi

g

THEN{
ẋf (t) = Af ixf (t) + Bf iŷ(t)

zf (t) = Cf ixf (t)
(3)

where i ∈ S = {1, 2, · · · , r}. xf (t) ∈ Rn, zf (t) ∈ Rp are the state and output of the filter, respectively. ŷ(t) is the real 
input of the filter. The matrices Afi ∈Rn×n, Bf i ∈Rn×m, Cf i ∈Rp×n are to be determined.

The defuzzified output of (3) is referred by{
ẋf (t) = Af (t)xf (t) + Bf (t)ŷ(t)

zf (t) = Cf (t)xf (t)
(4)

where Af (t) =∑r
i=1 hiAf i , Bf (t) =∑r

i=1 hiBf i , Cf (t) =∑r
i=1 hiCf i .

Remark 1. Under the traditional control system structure, the effect of the transmission delay can be neglected, that is 
ŷ(t) = y(t). However, in networked control systems, the transmission delay should be take into account. In this paper, 
considering the existence of the network induced delay, ŷ(t) �= y(t).
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Suppose the time-varying delay in the network communication is dk and dk ∈ [0, d̄), where d̄ is a positive real 
number. Therefore, the sampled sensor measurements y(t0h), y(t1h), y(t2h), · · · will arrive at the filter side at the 
instants t0h + d0, t1h + d1, t2h + d2, · · ·, respectively. ŷ(t) in Eq. (4) can be described as [5,14]

ŷ(t) =
r∑

i=1

hiCix(tkh), t ∈ [tkh + dtk , tk+1h + dtk+1 ] (5)

where h is the sampling period, tk ∈ {1, 2, 3, · · ·}. dtk and dtk+1 are the network induced delays at the transmission 
instant tkh and tk+1h, respectively.

Considering the possible sensor failure, (5) can be rewritten as

ŷ(t) =
r∑

i=1

hiΞCix(tkh) =
r∑

i=1

m∑
l=1

hiΞlElCix(tkh), t ∈ [tkh + dtk , tk+1h + dtk+1] (6)

where Ξ = diag{Ξ1, Ξ2, · · · , Ξm} with Ξi(i = 1, 2, · · · , m) being m unrelated random variables taking values on 
the interval [0, θ ], θ ≥ 1 and El = diag{0, · · · ,0︸ ︷︷ ︸

l−1

, 1, 0, · · · ,0︸ ︷︷ ︸
m−l

}. The mathematical expectation and variance of Ξi

(i = 1,2, · · · ,m) are Ξ̄i and δ2
i , respectively. Ξ̄i and δ2

i can determined the failure rate and the distortion degree 
of the ith sensor.

Define Ξ̄ = diag{Ξ̄1, Ξ̄2, · · · , Ξ̄m}, we can easily derive Ξ̄ =∑m
l=1 Ξ̄lEl . For a matrix Θ > 0, we can get⎧⎪⎨

⎪⎩
E{Ξ − Ξ̄} = 0

E
{
(Ξ − Ξ̄)T Θ(Ξ − Ξ̄)

}=
m∑

l=1

δ2
i E

T
l ΘEl

Remark 2. When sensors have faults, the output signal may be larger or smaller than what it should be. Considering 
this case, we assume the variables Ξi (i = 1, 2, · · · , m) take values in the interval [0, θ ], θ ≥ 1. When Ξi ∈ {0, 1}, it 
means the sensor i has completely failure or not. Ξi = 1 means the sensor i works normally, Ξi = 0 means signal sent 
by sensor i is lost during transmission. Moreover, 0 < Ξi < 1 and Ξi > 1 means the case of data distortion happen, 
that is, the signal at the filter is smaller or greater than it actually is.

As is well known, the widely used periodic sampling mechanism may lead to transmit many unnecessary signals, 
which reduces bandwidth utilization. In order to reduce the load of network transmission and save the network band-
width, there is a great need to introduce an event triggered mechanism which decides whether the newly sampled data 
should be send out to the filter. As is shown in Fig. 1, similar to [11], we introduce an event generator between the 
sensor and the filter. The sensor measurements are sampled regularly by the sampler of the smart sensor with period h, 
which will be given in sequel. Whether or not the newly sampled sensor measurements will be sent out to the filter 
are determined by the following judgment algorithm:[

E
{
Ξ̄y

(
(k + j)h

)}−E
{
Ξ̄y(kh)

}]T
Ω
[
E
{
Ξ̄y

(
(k + j)h

)}−E
{
Ξ̄y(kh)

}]
≤ ρ

[
E
{
Ξ̄y

(
(k + j)h

)}]T
ΩE

[{
Ξ̄y

(
(k + j)h

)}]
(7)

where Ω is a symmetric positive definite matrix, j = 1, 2, · · · , and ρ ∈ [0, 1). Only when the current sampled sensor 
measurements y((k + j)h) and the latest transmitted sensor measurements y(kh) variate the specified threshold (7), 
the current sampled sensor measurements y((k + j)h) can be transmitted by the event generator and sent into the 
filter.

Remark 3. From event-triggered algorithm (7), it is easily seen that the sensor measurement are sampled at time kh

by sampler with a given period h, the next sensor measurement is at time (k + 1)h. Suppose that the release times are 
t0h, t1h, t2h, · · · , it is easily seen that sih = ti+1h − tih denotes the release period of event generator in (7), sih means 
that the sampling between the two conjoint transmitted instant.
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Remark 4. It is easily seen from event-triggered algorithm (7) that the set of the release instants {t0h, t1h, t2h, · · ·} ⊆
{0, 1, 2, · · ·}. The amount of {t0h, t1h, t2h, · · ·} depends on the value of ρ and the variation of the sensor measurements.

Similar to [10–12] for technical convenience, consider the following two cases:

Case 1: If tkh + h + d̄ ≥ tk+1h + dk+1, where d̄ = maxdk , define a function d(t) as

d(t) = t − tkh, t ∈ [tkh + dk, tk+1h + dk+1) (8)

It can easily be obtained that

dk ≤ d(t) ≤ (tk+1 − tk)h + dk+1 ≤ h + d̄ (9)

Case 2: If tkh + h + d̄ < tk+1h + dk+1, consider the following two intervals:

[tkh + dk, tkh + h + d̄), [tkh + ih + d̄, tkh + ih + h + d̄)

Since dk ≤ d̄ , it can be easily shown that there exists a positive integer δM ≥ 1 such that

tkh + δMh + d̄ < tk+1h + dk+1 ≤ tkh + δMh + h + d̄

Moreover, x(tkh) and tkh + ih with i = 1, 2, · · · , δM satisfy (7). Let⎧⎨
⎩

I0 = [tkh + dk, tkh + h + d̄)

Ii = [tkh + ih + d̄, tkh + ih + h + d̄)

IdM
= [tkh + δMh + d̄, tk+1h + dk+1)

(10)

where i = 1, 2, · · · , δM − 1. It can be easily shown that

[tkh + dk, tk+1h + dk+1) =
i=δM⋃
i=0

Ii (11)

Define

d(t) =
⎧⎨
⎩

t − tkh, t ∈ I0
t − tkh − ih, t ∈ Ii, i = 1,2, · · · , δM − 1
t − tkh − δMh, t ∈ IδM

(12)

From the definition of d(t), we have⎧⎨
⎩

tk ≤ d(t) < h + d̄, t ∈ I0

tk ≤ d̄ ≤ d(t) < h + d̄, t ∈ Ii, i = 1,2, · · · , dM − 1
tk ≤ d̄ ≤ d(t) < h + d̄, t ∈ IdM

(13)

where the third row in (10) holds because tk+1h + dk+1 ≤ tkh + (dM + 1)h + d̄ . Obviously,

0 ≤ dk ≤ d(t) ≤ h + d̄ � dM, t ∈ [tkh + dk, tk+1h + dk+1) (14)

In Case 1, for t ∈ [tkh + dk, tk+1h + dk+1), define an error vector ek(t) = 0. In Case 2, define the mathematical 
expectation of the sensor measurement error between the current sampling instant and the latest transmission instant

Ξ̄ek(t) =
⎧⎨
⎩

0, t ∈ I0

Ξ̄y(tkh) − Ξ̄y(tkh + ih), t ∈ Ii, i = 1,2, · · · , δM − 1
Ξ̄y(tkh) − Ξ̄y(tkh + δMh), t ∈ IδM

(15)

From the definition of Ξ̄ek(t) and the triggering algorithm (7), it can be easily seen that for t ∈ [tkh +dk, tk+1h +dk+1)

eT
k (t)Ξ̄T ΩΞ̄ek(t) ≤ ρyT

(
t − d(t)

)
Ξ̄T ΩΞ̄y

(
t − d(t)

)
(16)

Here, the measurement output is sampled before it enters the filter; based on the sampling technique and zero-order 
hold, the actual output can be described as

y(tkh) =
r∑

i=1

hiΞCix(tkh) (17)
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Remark 5. Notice that the relation of tkh +h + d̄ ≥ tk+1h +dk+1 in Case 1 means the newly sampled sensor measure-
ment y(tkh +h) will be transmitted and arrive at the filter side at the instant tkh +h +dk+1; tkh +h + d̄ < tk+1h +dk+1
in Case 2 means the newly sampled sensor measurement y(tkh + h) and the latest sensor measurement y(tkh) variate 
the judgment algorithm (7), and y(tkh + h) will not be transmitted to the filter side.

Remark 6. From (15), we can deduce that the sensor measurement error between the current sampling instant and the 
latest transmission instant can be calculated as

ek(t) =
⎧⎨
⎩

0, t ∈ I0
y(tkh) − y(tkh + ih), t ∈ Ii, i = 1,2, · · · , δM − 1
y(tkh) − y(tkh + δMh), t ∈ IδM

(18)

Remark 7. It is seen from the definition of d(t) that d(t) is different from the traditional time-varying delay. d(t)

depends not only on the release times, but also on the network induce delay dk and the sampling period h.

Remark 8. Since there is a communication network between the sensor and the filter, the premises in the system and 
the ones in the filter should be asynchronous. That is, at the same instant t ∈ [tkh + dk, tk+1h + dk+1), when θi(t) is 
available in (2), only θi(tkh) is available in the filter. In this paper, we assume the mechanical model of the studied 
system is known a priori, when the initial condition is given and the state of the studied system can be calculated based 
on the known mechanical model. Since θi(tkh) is available at the filter, θi(t) can be calculated for t ∈ [tkh, tk+1h). 
Therefore, the synchronous premise variables θi(t) can be derived in the filter side.

Based on the above description, combining (17) and (13), from (6) and (15), the filter input can be rewritten as

ŷ(t) =
r∑

i=1

hiΞ̄Cix
(
t − d(t)

)+ Ξ̄ek(t) +
r∑

i=1

hi

(
(Ξ − Ξ̄)Cix

(
t − d(t)

))
, t ∈ [tkh + dk, tk+1h + dk+1)

(19)

Combining (4) and (19), the defuzzified value of the filter can be rewritten as⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ẋf (t) =
r∑

i=1

r∑
j=1

hihj

(
Af ixf (t) + Bf i

(
Ξ̄Cix

(
t − d(t)

)+ Ξ̄ek(t) + (Ξ − Ξ̄)Cix
(
t − d(t)

)))
zf (t) =

r∑
i=1

r∑
j=1

hihjCf ixf (t)

(20)

Define e(t) = [ x(t)

xf (t)

]
, z̃(t) = z(t) − zf (t), the following filtering-error system based on Eqs. (2) and (20) can be 

obtained as⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ė(t) =
r∑

i=1

r∑
j=1

hihj

{
Āe(t) + ĀdHe

(
t − τ(t)

)+ B̄He
(
t − d(t)

)+ B̄1ek(t) + Āww(t) + B̄tHe
(
t − d(t)

)}
z̃(t) =

r∑
i=1

r∑
j=1

hihj L̄e(t)

(21)

where

Ā =
[

Ai 0
0 Afj

]
, Ād =

[
Adi

0

]
, B̄ =

[
0

Bfj Ξ̄Ci

]
, B̄1 =

[
0

Bfj Ξ̄

]
, Āw =

[
Awi

0

]
,

B̄t =
[

0
Bfj (Ξ − Ξ̄)Ci

]
, L̄ = [Li −Cfj ] , H = [ I 0 ]

Remark 9. When formulating the system (21), both of the transmission delay and event triggering condition (7) are 
taken into consideration. If ρ = 0, the event-triggered scheme reduces to a periodic release scheme, which implying 
that Ξ̄ek(t) = 0, then the sensor measurement degenerates into (6) and the system reduces to the case in [5], where 
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the robust and reliable filter design for T–S fuzzy model-based networked control systems with random sensor failure 
are studied.

In the following, we need to introduce two lemmas, which will help us in deriving the main results.

Definition 1. (See [15].) For a given function V : Cb
F0

([−τM, 0], Rn) × S, its infinitesimal operator L is defined as

L
(
V η(t)

)= lim
�→0+

1

�

[
E
(
V (ηt + �)

∣∣ηt

)− V (ηt )
]

(22)

Lemma 1. (See [16].) For any vectors x, y ∈ Rn, and positive definite matrix Q ∈ Rn×n, the following inequality 
holds:

2xT y ≤ xT Qx + yT Q−1y

Lemma 2. (See [17].) Suppose τ(t) ∈ [τm, τM ], d(t) ∈ [0, dM ], Ξ1, Ξ2, Ξ3, Ξ4 and Ω are matrices with appropriate 
dimensions, then(

τ(t) − τm

)
Ξ1 + (

τM − τ(t)
)
Ξ2 + d(t)Ξ3 + (

dM − d(t)
)
Ξ4 + Ω < 0 (23)

if and only if

(τM − τm)Ξ1 + dMΞ3 + Ω < 0

(τM − τm)Ξ2 + dMΞ3 + Ω < 0

(τM − τm)Ξ1 + dMΞ4 + Ω < 0

(τM − τm)Ξ2 + dMΞ4 + Ω < 0

3. Main results

In this section, with a given filter with form (20), we will first propose the following performance analysis for the 
augmented systems (21). Then we deal with the design problem of the filter design for system (2).

Theorem 1. For given parameters γ , τm, τM , dM and ρ, system (21) is exponentially stable in the mean square with 
an H∞ disturbance attenuation level γ under the event trigger scheme (7) if there exist matrices P > 0, Qk > 0, 
Rk > 0 (k = 1, 2, 3), Ω > 0, and Mij , Nij , Tij , Sij with appropriate dimensions satisfying

Ξij + Ξji < 0, i ≤ j ∈ S (24)

where

Ξij =

⎡
⎢⎢⎢⎢⎣

Ω
ij

11 ∗ ∗ ∗
Ω

ij

21 Ω
ij

22 ∗ ∗
Ω

ij

31 0 Ω
ij

33 ∗
Ω

ij

41(s) 0 0 Ω
ij

44

⎤
⎥⎥⎥⎥⎦ , (s = 1,2,3,4)

Ω
ij

11 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Γij1 ∗ ∗ ∗ ∗ ∗ ∗ ∗
R2 Γij2 ∗ ∗ ∗ ∗ ∗ ∗

HT ĀT
d P Mij3 − MT

ij2 Γij3 ∗ ∗ ∗ ∗ ∗
0 0 Nij4 − NT

ij3 Γij4 ∗ ∗ ∗ ∗
HT B̄T P + Tij5 − T T

ij1 0 0 0 Γij5 ∗ ∗ ∗
0 0 0 0 Sij6 − ST

ij5 Γij6 ∗ ∗
B̄T

1 P 0 0 0 0 0 −Ξ̄T ΩΞ̄ ∗
¯T 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
AwP 0 0 0 0 0 0 −γ I
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Γij1 = PĀ + ĀT P + Q1 + Q2 + Q3 − R2 + Tij1 + T T
ij1, Γij2 = −Q1 − R2 + Mij2 + MT

ij2

Γij3 = −Mij3 − MT
ij3 + Nij3 + NT

ij3, Γij4 = −Q2 − Nij4 − NT
ij4

Γij5 = ρHT CT
i Ξ̄T ΩΞ̄CiH − Tij5 − T T

ij5 + Sij5 + ST
ij5, Γij6 = −Q3 − Sij6 − ST

ij6

Ω
ij

21 =

⎡
⎢⎢⎣

L̄ 0 0 0 0 0 0 0√
τ21PĀ 0

√
τ21PĀdH 0

√
τ21P B̄H 0

√
τ21P B̄1

√
τ21PĀw

τmP Ā 0 τmP ĀdH 0 τmP B̄H 0 τmP B̄1 τmP Āw√
dMP Ā 0

√
dMP ĀdH 0

√
dMP B̄H 0

√
dMP B̄1

√
dMP Āw

⎤
⎥⎥⎦

Ω
ij

22 = diag
{−I,−PR−1

1 P,−PR−1
2 P,−PR−1

3 P
}
, Ω

ij

33 = diag{R1,R2,R3},
Rk = diag

{−PR−1
k P, · · · ,−PR−1

k P︸ ︷︷ ︸
m

}
, k = 1,2,3, Ω

ij

44 = diag{−R1,−R3}, √
τ21 = √

τM − τm

Ω
ij

31 =
[0 0 0 0 D̆1 0 0 0

0 0 0 0 D̆2 0 0 0
0 0 0 0 D̆3 0 0 0

]
, D̆1 =

⎡
⎣

√
τ21δ1PD̂1H

...√
τ21δmP D̂mH

⎤
⎦ ,

D̆2 =
⎡
⎣ δ1τmP D̂1H

...

δ1τmδmP D̂mH

⎤
⎦ , D̆3 =

⎡
⎣

√
dMδ1PD̂1H

...√
dMδmP D̂mH

⎤
⎦ , D̂l =

[
0

BfjElCi

]
, l = 1,2, · · · ,m

Ω
ij

41(1) =
[√

τ21M
T
ij√

dMT T
ij

]
, Ω

ij

41(2) =
[√

τ21M
T
ij√

dMST
ij

]
, Ω

ij

41(3) =
[√

τ21N
T
ij√

dMST
ij

]
, Ω

ij

41(4) =
[√

τ21N
T
ij√

dMT T
ij

]
MT

ij = [
0 MT

ij2 MT
ij3 0 0 0 0 0

]
, NT

ij = [
0 0 NT

ij3 NT
ij4 0 0 0 0

]
T T

ij = [
T T

ij1 0 0 0 T T
ij5 0 0 0

]
, ST

ij = [
0 0 0 0 ST

ij5 ST
ij6 0 0

]
Proof. Choose the following Lyapunov functional candidate as

V (t) = V1(t) + V2(t) + V3(t) (25)

where

V1(t) = eT (t)P e(t)

V2(t) =
t∫

t−τm

eT (s)Q1e(s)ds +
t∫

t−τM

eT (s)Q2e(s)ds +
t∫

t−dM

eT (s)Q3e(s)ds

V3(t) =
t−τm∫

t−τM

t∫
s

ėT (v)R1ė(v)dvds + τm

t∫
t−τm

t∫
s

ėT (v)R2ė(v)dvds +
t∫

t−dM

t∫
s

ėT (v)R3ė(v)dvds

and P > 0, Qk > 0, Rk > 0 (k = 1, 2, 3).
By applying the infinitesimal operator (Eq. (22)) for Vi(t) (i = 1, 2, 3) and taking expectation on it, we can obtain

E
{
LV1(t)

}=
r∑

i=1

r∑
j=1

hihj 2eT (t)PA (26)

E
{
LV2(t)

}= eT (t)(Q1 + Q2 + Q3)e(t) − eT (t − τm)Q1e(t − τm) − eT (t − τM)Q2e(t − τM)

− eT (t − dM)Q3e(t − dM) (27)
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E
{
LV3(t)

}=
r∑

i=1

r∑
j=1

hihj

[
ėT (t)R̃ė(t)

]−
t−τm∫

t−τM

ėT (s)R1ė(s)ds − τm

t∫
t−τm

ėT (s)R2ė(s)ds

−
t∫

t−dM

ėT (s)R3ė(s)ds (28)

where A = Āe(t) + ĀdHe(t − τ(t)) + B̄He(t − d(t)) + B̄1ek(t) + Āww(t), R̃ = (τM − τm)R1 + τ 2
mR2 + dMR3, and 

P > 0, Qi > 0, Ri > 0 (i = 1, 2, 3)
Notice that

−τm

t∫
t−τm

ėT (s)R2ė(s)ds ≤
[

e(t)

e(t − τm)

]T [−R2 R2
R2 −R2

][
e(t)

e(t − τm)

]
(29)

Employing the free-weighting matrices method [18,19], it is easily derived that

2
r∑

i=1

r∑
j=1

hihj ζ
T (t)Mij

[
e(t − τm) − e

(
t − τ(t)

)−
t−τm∫

t−τ(t)

ė(s)ds

]
= 0 (30)

2
r∑

i=1

r∑
j=1

hihj ζ
T (t)Nij

[
e
(
t − τ(t)

)− e(t − τM) −
t−τ(t)∫

t−τM

ė(s)ds

]
= 0 (31)

2
r∑

i=1

r∑
j=1

hihj ζ
T (t)Tij

[
e(t) − e

(
t − d(t)

)−
t∫

t−d(t)

ė(s)ds

]
= 0 (32)

2
r∑

i=1

r∑
j=1

hihj ζ
T (t)Sij

[
e
(
t − d(t)

)− e(t − dM) −
e(t−d(t))∫
t−dM

ė(s)ds

]
= 0 (33)

where Nij , Mij , Tij and Sij are matrices with appropriate dimensions, and

ζ T (k) = [
eT (t) eT (t − τm) eT (t − τ(t)) eT (t − τM) eT (t − d(t)) eT (t − dM) eT

k (t) wT (t)
]T

By Lemma 1, we have

−2ζ T (t)Mij

t−τm∫
t−τ(t)

ė(s)ds ≤ (
τ(t) − τm

)
ζ T (t)MijR

−1
1 MT

ij ζ(t) +
t−τm∫

t−τ(t)

ėT (s)R1ė(s)ds (34)

−2ζ T (t)Nij

t−τ(t)∫
t−τM

ė(s)ds ≤ (
τM − τ(t)

)
ζ T (t)NijR

−1
1 NT

ij ζ(t) +
t−τ(t)∫

t−τM

ėT (s)R1ė(s)ds (35)

−2ζ T (t)Tij

t∫
t−d(t)

ė(s)ds ≤ d(t)ζ T (t)TijR
−1
3 T T

ij ζ(t) +
t∫

t−d(t)

ėT (s)R3ė(s)ds (36)

−2ζ T (t)Sij

x(t−d(t))∫
t−dM

ė(s)ds ≤ (
dM − d(t)

)
ζ T (t)SijR

−1
3 ST

ij ζ(t) +
x(t−d(t))∫
t−dM

ėT (s)R3ė(s)ds (37)

It is easy to obtain that
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E
{
ėT (t)R̃ė(t)

}
=

r∑
i=1

r∑
j=1

hihj

{
AT R̃A+

m∑
l=1

δ2
l e

T
(
t − d(t)

)
HT D̂T

l R̃D̂lHeT
(
t − d(t)

)}
(38)

Combining (16) and (25)–(38), we can obtain that

E
{
LV (t) − γ 2wT (t)w(t) + z̃T (k)z̃(k)

}
≤

r∑
i=1

r∑
j=1

hihj

{
ζ T (t)Ω

ij

11ζ(t) +AT HT R̃HA+ eT (t)L̄T L̄e(t)

+ ρeT
(
t − d(t)

)
HT CT

i Ξ̄T ΩΞ̄CiHe
(
t − d(t)

)− eT
k (t)Ξ̄T ΩΞ̄ek(t)

+ (
τ(t) − τm

)
ζ T (t)MijR

−1
1 MT

ij ζ(t) + (
τM − τ(t)

)
ζ T (t)NijR

−1
1 NT

ij ζ(t) + d(t)ζ T (t)TijR
−1
3 T

ij
i ζ(t)

+ (
dM − d(t)

)
ζ T (t)SijR

−1
3 ST

ij ζ(t)
}

(39)

By using well-known Schur complement and Lemma 2, from (24), one can easily see that

E
{
LV (t)

}≤ E
{
L
[
γ 2wT (t)w(t) − z̃T (t)z̃(t)

]}
(40)

As is well known, the remaining part of the proof is similar to those in [5] and so omitted here for simplicity. The 
proof is complete.

Based on Theorem 1, we are in position to design a filter in the form of (3). The explicit expression of the parameters 
of the designed filter are given in the following theorem. �
Theorem 2. For given positive scalars γ , τm, τM , dM , ε1, ε2, ε3 and σ , system (21) is exponentially stable in the mean 
square under the event trigger scheme (7) if there exist matrices P1 > 0, P̄3 > 0, Q̄1, Q̄2, Q̄3, R̄1, R̄2, R̄3, Ω > 0, 
Āfj , B̄fj , C̄fj , and M̄ij , N̄ij , T̄ij , S̄ij with appropriate dimensions, such that the following LMIs hold:

Σij + Σji < 0, i ≤ j ∈ S (41)

P1 − P̄3 > 0 (42)

where

Σij =

⎡
⎢⎢⎢⎣

Φ
ij

11 ∗ ∗ ∗
Φ

ij

21 Φ
ij

22 ∗ ∗
Φ

ij

31 0 Φ
ij

33 ∗
Φ

ij

41(s) 0 0 Φ
ij

44

⎤
⎥⎥⎥⎦ , (s = 1,2,3,4)

Φ
ij

11 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Γ̄ij1 ∗ ∗ ∗ ∗ ∗ ∗ ∗
R̄2 Γ̄ij2 ∗ ∗ ∗ ∗ ∗ ∗

Υ̃ij31 M̄ij3 − M̄T
ij2 Γ̄ij3 ∗ ∗ ∗ ∗ ∗

0 0 N̄ij4 − N̄T
ij3 Γ̄ij4 ∗ ∗ ∗ ∗

Υ̃ij51 + T̄ij5 − T̄ T
ij1 0 0 0 Γ̄ij5 ∗ ∗ ∗

0 0 0 0 Sij6 − ST
ij5 Γ̄ij6 ∗ ∗

Υ̃ij71 0 0 0 0 0 −Ξ̄T ΩΞ̄ ∗
Υ̃ij81 0 0 0 0 0 0 −γ 2I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Γ̄ij1 = Υ̃ij1 + Υ̃ T
ij1 + Q̄1 + Q̄2 + Q̄3 − R̄2 + T̄ij1 + T̄ T

ij1, Υ̃ij1 =
[

P1Ai Āfj

P̄3Ai Āfj

]
,

Υ̃ij31 =
[

AT
diP1 AT

diP̄3

0 0

]
, Γ̄ij2 = −Q̄1 − R̄2 + M̄ij2 + M̄T

ij2

Γ̄ij3 = −M̄ij3 − M̄T
ij3 + N̄ij3 + N̄T

ij3, Γ̄ij4 = −Q̄2 − N̄ij4 − N̄T
ij4
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Γ̄ij5 = Υ̃ij5 − T̄ij5 − T̄ T
ij5 + S̄ij5 + S̄T

ij5, Γ̄ij6 = −Q̄3 − S̄ij6 − S̄T
ij6

Υ̃ij51 =
[

CT
i Ξ̄T B̄T

fj CT
i Ξ̄T B̄T

fj

0 0

]
, Υ̃ij5 =

[
ρCT

i Ξ̄T ΩΞ̄Ci 0
0 0

]
,

Υ̃ij71 = [
Ξ̄T B̄T

fj Ξ̄T B̄T
fj

]
, Υ̃ij81 = [

AT
wiP1 AT

wiP̄3
]

Ω
ij

21 =

⎡
⎢⎢⎢⎣

L̃ij 0p×2n 0p×2n 0p×2n 0p×2n 0p×2n 0p×m 0p×n√
τ21Υ̃ij1 02n×2n

√
τ21Υ̃

T
ij31 02n×2n

√
τ21Υ̃

T
ij51 02n×2n

√
τ21Υ̃

T
ij71

√
τ21Υ̃

T
ij81

τmΥ̃ij1 02n×2n τmΥ̃ T
ij31 02n×2m τmΥ̃ T

ij51 02n×2n τmΥ̃ T
ij71 τmΥ̃ T

ij81√
dMΥ̃ij1 02n×2n

√
dMΥ̃ T

ij31 02n×2n

√
dMΥ̃ T

ij51 02n×2n

√
dMΥ̃ T

ij71

√
dMΥ̃ T

ij81

⎤
⎥⎥⎥⎦

Φ
ij

22 = diag
{−I,−2ε1P̄ + ε2

1R̄1,−2ε2P̄ + ε2
2R̄2,−2ε3P̄ + ε2

3R̄3
}
, P̄ =

[
P1 P̄3
P̄3 P̄3

]
Rk = diag

{−2εkP̄ + ε2
k R̄k, · · · ,−2εkP̄ + ε2

k R̄k︸ ︷︷ ︸
m

}
, k = 1,2,3.

Φ
ij

33 = diag{R1,R2,R3}, Ω
ij

44 = diag{−R̄1,−R̄3}, L̃ij = [Li −C̄fj ]

Ω
ij

31 =
[02n×2n 02n×2n 02n×2n 02n×2n D̆12 02n×2n 02n×m 02n×n

02n×2n 02n×2n 02n×2n 02n×2n D̆22 02n×2n 02n×m 02n×n

02n×2n 02n×2n 02n×2n 02n×2n D̆32 02n×2n 02n×m 02n×n

]
, D̆12 =

⎡
⎣

√
τ21δ1D̂12

...√
τ21δmD̂m2

⎤
⎦

D̆22 =
⎡
⎣ δ1τmD̂12

...

δ1τmδmD̂m2

⎤
⎦ , D̆32 =

⎡
⎣

√
dMδ1D̂12

...√
dMδmD̂m2

⎤
⎦ , D̂l2 =

[
B̄fjElCi 0
B̄fjElCi 0

]
, l = 1,2, · · · ,m

Φ
ij

41(1) =
[√

τ21M̄
T
ij√

dMT̄ T
ij

]
, Φ

ij

41(2) =
[√

τ21M̄
T
ij√

dMS̄T
ij

]
, Φ

ij

41(3) =
[√

τ21N̄
T
ij√

dMS̄T
ij

]
, Φ

ij

41(4) =
[√

τ21N̄
T
ij√

dMT̄ T
ij

]
M̄T

ij = [
02n×2n M̄T

ij2 M̄T
ij3 02n×2n 02n×2n 02n×2n 02n×m 02n×n

]
N̄T

ij = [
02n×2n 02n×2n N̄T

ij3 N̄T
ij4 02n×2n 02n×2n 02n×m 02n×n

]
T̄ T

ij = [
T̄ T

ij1 02n×2n 02n×2n 02n×2n T̄ T
ij5 02n×2n 02n×m 02n×n

]
S̄T

ij = [
02n×2n 02n×2n 02n×2n 02n×2n S̄T

ij5 S̄T
ij6 02n×m 02n×n

]
Moreover, if the above conditions are feasible, the parameter matrices of the filter are given by⎧⎨

⎩
Afj = Āfj P̄

−1
3

Bfj = B̄fj

Cfj = C̄fj P̄
−1
3 ,

j ∈ S (43)

Proof. Due to(
Rk − ε−1

k P
)
R−1

k

(
Rk − ε−1

k P
)≥ 0, (k = 1,2,3)

we have

−PR−1
k P ≤ −2εkP + ε2

kRk

Substitute −PR−1
k P with −2εkP + ε2

kRk (k = 1, 2, 3) into (41), we can obtain

Πij + Πji > 0 (44)

where
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Πij =

⎡
⎢⎢⎢⎣

Ω
ij

11 + Υ + Υ T ∗ ∗ ∗
Ω

ij

21 Ω̄
ij

22 ∗ ∗
Ω

ij

31 0 Ω̄
ij

33 ∗
Ω

ij

41(s) 0 0 Ω
ij

44

⎤
⎥⎥⎥⎦ , (s = 1,2,3,4),

Ω̄
ij

22 = diag
{−I,−2ε1P + ε2

1R1,−2ε2P + ε2
2R2,−2ε3P + ε2

3R3
}
,

Ω̄
ij

33 = diag{R̄1, R̄2, R̄3},
R̄k = diag

{−2εkP + ε2
kRk, · · · ,−2εkP + ε2

kRk︸ ︷︷ ︸
m

}
, k = 1,2,3.

Since P̄3 > 0, there exist P2 and P3 > 0 satisfying P̄3 = P T
2 P −1

3 P2.
Define

P =
[

P1 P T
2

P2 P3

]
, J =

[
I 0
0 P T

2 P −1
3

]
, �= diag{J, · · · , J︸ ︷︷ ︸

6

, I, I, I, J, · · · , J︸ ︷︷ ︸
3m+5

} (45)

By Schur complement, P > 0 is equivalent to P1 − P̄3 > 0.
Multiply (44) by � from the left side and its transpose from the right side, respectively, and defining P̄ = JPJT =[ P1 P̄3

P̄3 P̄3

]
, Q̄k = JQkJ

T , R̄k = JRkJ
T (k = 1, 2, 3), M̄ijv1 = JMijv1J

T , N̄ijv2 = JNijv2J
T , T̄ijv3 = JTijv3J

T , 

S̄ijv4 = JSijv4J
T , (v1 = 2, 3; v2 = 3, 4; v3 = 1, 5; v4 = 5, 6). Define variables⎧⎪⎨

⎪⎩
Āfj = Âfj P̄3, Âfj = P T

2 AfjP
−T
2

B̄fj = P T
2 Bfj

C̄fj = Ĉfj P̄3, Ĉfj = CfjP
−T
2

(46)

Then, (24) is equivalent to (41) for s = 1, 2, 3, 4, respectively.
Next, we will show that, if (41) are solvable for Āfj , B̄fj , C̄fj and P̄3, then the parameter matrices of the filter (4)

can be chosen as in (43).
Replacing the filter parameters (Afj , Bfj , Cfj ) by (P −T

2 ÂfjP
T
2 , P −T

2 B̄fj , ĈfjP
T
2 ), in (4), then, the filter (4) can 

be rewritten as{
ẋf (t) = P −T

2 ÂfjP
T
2 xf (t) + P −T

2 B̄fj ŷ(t)

zf (t) = ĈfjP
T
2 xf (t)

(47)

Defining x̂(t) = P T
2 xf (t), similar to the analysis of [20], (47) becomes{

x̂f (t) = Âfj x̂(t) + B̄fj ŷ(t)

zf (t) = Ĉfj x̂(t)
(48)

That is (Âfj , B̂fj , Ĉfj ) can be chosen as the filter parameters.
Then, from (46) and (48), we can obtain that the parameter matrices of the filter are given by (43). This completes 

the proof. �
Remark 10. The introduction of event-triggered scheme (7), which can reduce the communication load, is an ef-
fective way to deal with the issue of limited resource and insufficient communication bandwidth and the case of 
inadequate computation power. Under the event-triggered mechanism (7), taking the probabilistic sensor failure into 
consideration, we provides a new filter design method in Theorem 2, which is expected to obtain better performance.

4. Simulation examples

Consider a specific T–S fuzzy system of Eq. (2) under a network control system structure, in which the system 
parameters are given as follows:
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Fig. 2. Responses of e(t) in Case 1.

A1 =
[−2.1 0.1

1 −2

]
, A2 =

[−1.9 0
−0.2 −1.1

]
, Ad1 =

[−1.1 0.1
−0.8 −0.9

]

Ad2 =
[−0.9 0

−1.1 −1.2

]
, Aw1 =

[
1

−0.2

]
, Aw2 =

[
0.3
0.1

]
, C1 = [ 1 0 ]

C2 = [ 0.5 −0.6 ] , L1 = [ 1 −0.5 ] , L2 = [−0.2 0.3 ]

h1
(
θ(t)

)= sin2 t, h2
(
θ(t)

)= cos2 t

w(t) =
⎧⎨
⎩

1 5 ≤ t ≤ 10
−1 15 ≤ t ≤ 20
0 else

In the following, we will consider three possible cases, which can show the effectiveness of the event-triggered 
scheme and the effect of the sensor failure rate on the system performance.

Case 1: when the sensors are in good condition, that is Ξ = I , we assume τm = 0.1, τM = 0.3, dM = 0.6, γ = 1.2 and 
the corresponding trigger parameter ρ = 0.9, by using the LMI toolbox of Matlab, we can obtain the corresponding 
trigger matrix Ω = 0.1234 and the following matrices:

P1 =
[

2.0292 −0.0247
−0.0247 2.0478

]
, P̄3 =

[
0.6623 −0.0203

−0.0203 0.9285

]

Āf 1 =
[−1.2972 0.0323

0.8823 −1.2050

]
, B̄f 1 =

[
0.0352

−0.0557

]
, C̄f 1 = [−0.5689 0.4166 ]

Āf 2 =
[−0.7089 0.3509

−0.3065 −1.1306

]
, B̄f 2 =

[−0.0255
0.0403

]
, C̄f 2 = [ 0.2071 −0.1213 ]

Then, by using Theorem 2, we can get the filter parameters as follows:

Af 1 =
[−1.9588 −0.0081

1.2932 −1.2695

]
, Bf 1 =

[
0.0352

−0.0557

]
, Cf 1 = [−0.8458 0.4302 ]

Af 2 =
[−1.0595 0.3548

−0.5005 −1.2287

]
, Bf 2 =

[−0.0255
0.0403

]
, Cf 2 = [ 0.3089 −0.1238 ]

For the initial condition x(0) = [ 1 −1 ]T , xf (0) = [ 0.8 −0.8 ]T and the sampling period h = 0.1, the simula-
tion result for the responses of e(t) is shown in Fig. 2. From the simulation, it can be found that with the use of the 
proposed method, the designed filter can satisfy the system performance.
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Fig. 3. Responses of z̃(t) in Case 2.

Case 2: The parameters for the sensor failure are Ξ̄ = 0.8 and δ = 0.05. When corresponding triggered parameter 
ρ = 0, the system reduces to time triggered. Set τm = 0.1, τM = 0.3, dM = 0.6, γ = 1.2, we can get the corresponding 
trigger matrix Ω = 28.6111 and the following matrices:

P1 =
[

2.0687 0.0028
0.0028 2.2237

]
, P̄3 =

[
0.6769 −0.0171

−0.0171 1.0270

]

Āf 1 =
[−1.3167 0.0405

0.9658 −1.3387

]
, B̄f 1 =

[
0.0972

−0.1796

]
, C̄f 1 = [−0.5666 0.4389 ]

Āf 2 =
[−0.7405 0.3841

−0.3176 −1.2814

]
, B̄f 2 =

[−0.1493
0.2756

]
, C̄f 2 = [ 0.2105 −0.1261 ]

With the application of the filter design method developed in Theorem 2, the filter parameters are obtained as

Af 1 =
[−1.9451 0.0070

1.3944 −1.2803

]
, Bf 1 =

[
0.0972

−0.1796

]
, Cf 1 = [−0.8266 0.4136 ]

Af 2 =
[−1.0849 0.3559

−0.5010 −1.2561

]
, Bf 2 =

[−0.1493
0.2756

]
, Cf 2 = [ 0.3080 −0.1176 ]

For the initial condition x(0) = [ 1 −1 ]T , xf (0) = [ 0.8 −0.8 ]T and the sampling period h = 0.1, the response 
of filter error z̃(t) is depicted in Fig. 3. The probabilistic sensor faults are shown in Fig. 4. It is seen from the simulation 
that with the sensor fault appearance, the designed filter can also satisfy the system performance.
Case 3: when the system is under the event-triggered scheme, let the corresponding trigger parameter ρ = 0.9 and 
Ξ̄ = 0.8, δ = 0.05, τm = 0.1, τM = 0.3, dM = 0.6, γ = 1.2, by applying Theorem 2, we can obtain the corresponding 
trigger matrix Ω = 0.1926 and the following matrices:

P1 =
[

2.0293 −0.0247
−0.0247 2.0481

]
, P̄3 =

[
0.6624 −0.0203

−0.0203 0.9286

]

Āf 1 =
[−1.2974 0.0323

0.8826 −1.2052

]
, B̄f 1 =

[
0.0440

−0.0695

]
, C̄f 1 = [−0.5689 0.4167 ]

Āf 2 =
[−0.7090 0.3510

−0.3066 −1.1308

]
, B̄f 2 =

[−0.0319
0.0503

]
, C̄f 2 = [ 0.2071 −0.1213 ]

Then, by applying Theorem 2, the filter parameters are derived as follows:
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Fig. 4. The probabilistic sensor fault in Case 2.

Fig. 5. The release instants and the release interval in Case 3.

Af 1 =
[−1.9589 −0.0081

1.2934 −1.2695

]
, Bf 1 =

[
0.0440

−0.0695

]
, Cf 1 = [−0.8457 0.4302 ]

Af 2 =
[−1.0594 0.3548

−0.5006 −1.2287

]
, Bf 2 =

[−0.0319
0.0503

]
, Cf 2 = [ 0.3089 −0.1238 ]

For the initial condition x(0) = [ 1 −1 ]T , xf (0) = [ 0.8 −0.8 ]T and the sampling period h = 0.1, the event-
triggering release instants and intervals are shown in Fig. 5. The simulation result for the responses of e(t) are shown 
in Fig. 6, which demonstrate that the designed filter can satisfy the system performance.

5. Conclusion

The reliable H∞ filter design for an event-based network control systems via T–S fuzzy model has been in-
vestigated. In particular, the event-triggered scheme inserted in the network has the advantages of reducing the 
communication load in the network and gearing up its efficiency. Moreover, employing the networked T–S fuzzy 
model with probabilistic sensor faults and the event triggered scheme, the fundamental stability criteria are obtained, 
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Fig. 6. Responses of e(t) in Case 3.

and a filter design method is developed. Then the explicit expression of the desired filter parameters has been derived. 
Lastly, a numerical example has been provided to show the usefulness and effectiveness of the proposed method.
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